Indian Statistical Institute M.Math Second year Final exam - Partial differential Equations

Total Marks : 40

[4]

 $\left[5\right]$

[3]

- 1. (a) Define the normed linear space $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ for $1 \le p \le \infty$ and $k \in \mathbb{N}$. [3]
 - (b) Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ which is in $H^1(\mathbb{R} \setminus \{0\})$ but not in $H^1(\mathbb{R})$. [2]
- 2. (a) State Rellich-Kondrachov compactness theorem for $W^{1,p}(\Omega)$ where Ω is a bounded open set of \mathbb{R}^N with C^1 boundary and $1 \le p < n$. Deduce that $W^{1,p}(\Omega) \subset L^p(\Omega)$ for all $1 \le p \le \infty$. [3]
 - (b) State and prove Poincare's inequality for $W_0^{1,2}(\Omega)$.
- 3. (a) Let $\Omega \subset \mathbb{R}^N$ be a bounded open set, $f \in L^2(\Omega)$ and $u \in H^1(\Omega) \cap C(\overline{\Omega})$ such that

$$\int_{\Omega} \nabla u . \nabla v + \int_{\Omega} uv = \int_{\Omega} fv$$

for every $v \in H_0^1(\Omega)$. Show that

$$\min\{\inf_{\Gamma} u, \inf_{\Omega} f\} \le u(x) \le \max\{\sup_{\Gamma} u, \sup_{\Omega} f\} \text{ for every } x \in \Omega.$$

Here Γ denotes the boundary of Ω .

- (b) If f = 0, show that $||u||_{L^{\infty}(\Omega)} \le ||u||_{L^{\infty}(\Gamma)}$. [1]
- 4. Let Ω_1 and Ω_2 be bounded domains in \mathbb{R}^N such that $\Omega_1 \subset \Omega_2$. Let $\lambda_1(\Omega_i)$ denote the least eigenvalue of Laplace operator with Dirichlet boundary conditions in Ω_i . Then show that $\lambda_1(\Omega_1) \geq \lambda_2(\Omega_2)$. [5]
- 5. (a) State the trace for $W^{1,p}(\Omega)$. Clearly state the assumptions on the domain Ω . [3]
 - (b) Let $B_1(0)$ denote the unit ball in \mathbb{R}^N centered at 0 and $\Omega = B_1(0) \cap \mathbb{R}^N_+$. If $u(x) = |x|^{-\alpha}$ for $0 < \alpha < \frac{N-2}{2}$, then it is known that $u \in W^{1,2}(\Omega)$. Find the trace of u and explain. [4]
- 6. (a) Define the fundamental solution of Heat equation in \mathbb{R}^N . [2]
 - (b) State Duhamel's principle for heat equation.
- 7. Assume Ω is connected. A function $u \in H^1(\Omega)$ is a weak solution of Neumann's problem

$$(*) \begin{cases} -\Delta u &= f \text{ in } \Omega\\ \frac{\partial u}{\partial \nu} &= 0 \text{ on } \partial \Omega \end{cases}$$

if

$$\int_{\Omega} \nabla u . \nabla v dx = \int_{\Omega} f v dx$$

for all $v \in H^1(\Omega)$. Suppose $f \in L^2(\Omega)$, prove that (*) has a weak solution if and only if $\int_{\Omega} f dx = 0.$ [5]